
SUPPLEMENTAL INFORMATION 1: MODEL-BASED
GEOSTATISTICAL PROCEDURES

Below are the details of themodel-based geo-statistical (MBG)
framework used to develop the malaria risk maps for Malawi.
The MBG procedure was adopted from Gething and others,1

where further model details, especially on age-standardization
of parasite rate data, can also be found. The generic model
code is available on Malaria Atlas Project Plasmodium

falciparum Cartographic Code Link2 and has been adapted
for Malawi. Model fitting was achieved by using Markov
chain Monte Carlo (MCMC).3,4

SI 1.1 MBG presentation.
Each of the Ni individuals in sample i was assumed P.

falciparum positive with probability ~kiP ¢ xi, tið Þ, so the number
positive N+

i was distributed binomially:

N+
i jNi ;P

0 xi; tið Þ �ind Bin Ni; k
~

iP
0 xi; tið ÞÞ�

S1:1

The coefficient P ¢(xi, ti) was modeled as a Gaussian pro-
cess. The factor ~ki converted P ¢(xi, ti) to the probability that
individuals within the age range reported for study i were
P. falciparum positive, and that the infection was detected,
thereby accounting for the influence of age on the probabil-
ity of detection.5 The age-standardization factor ~ki in each
population was assumed drawn independently from a distri-
bution Dk

~ whose parameters were the lower AL,i and upper
AU,i ages reported in study i:

~kijAU, i,AL, i �ind Dk
~ AU, i, AL, i
� �

S1:2

The form of Dk
~ is described by Gething and others.1

PfPR2–10 is the P. falciparum parasite rate for individuals
between ages 2 (2.00) and 10 years (9.99). Its value at an arbi-
trary location x and time t is the product of P¢(x, t) and another
age-standardization factor, k2–10, distributed asDk(2, 10):

PR2�10 x, tð Þ=P 0 x, tð Þk2�10 x, tð Þ
k2�10 x, tð Þ �ind Dk 2, 10ð Þ S1:3

The factor k2–10 converted P¢(x, t) to the probability that
individuals between ages 2 and 10 years at location x are P.
falciparum positive. The age-standardization factor ~k of a
survey is the product of the age-standardization factor k asso-
ciated with the same place, time and age range and the sensi-
tivity of the survey.
The coefficient P ¢(x, t) at arbitrary location x and time t was

modeled as the inverse-logit function applied to a random
field f evaluated at (x, t), plus an unstructured (random) com-
ponent ò(x, t).

òP 0 x, tð Þ = logit−1ð f x, tð Þ+ x, tð ÞÞ S1:4

The components ò(x, t) were assumed independent and
identically distributed for each location x and time t and a
standard diffuse but proper prior with expectation 0.25 was
assigned to their variance V.

ò x, tð ÞjV �iid N 0, Vð Þ S1:5

1

g
� Gamma 3, 12ð Þ S1:6

The random field f was modeled as a Gaussian process
characterized by its mean and covariance functions:

f x, tð Þjb, t, fx, ft , l,y , r,u � GPðb, CÞ S1:7

The mean function was defined as m = bX ,where X = 1,
X1(x), . . ., Xn(x) was a vector consisting of a constant and N =
2 environmental covariates indexed by spatial location x ,and
b = b0, b1,. . .,bn was a corresponding vector of regression coef-
ficients. The covariance of the field was modeled by using a
version of the spatiotemporal covariance function recently
recommended by Stein6 (equation 2.12):

C xi, ti; xj, tj
� �

= t2g 0ð Þ Dxð Þg Dtð ÞKg Dtð Þ Dxð Þ
2g Dtð Þ−1G g Dtð Þ+1ð Þ ,

g Dtð Þ= 1

2r+2 1−rð Þ 1−uð Þe�jDtj=ft+ucos 2pDtð Þ½ � ,

Dt= jti − tjj

S1:8

Kg is the modified Bessel function of the second kind of
order g, and G is the gamma function [7,8].
Spatial distance between a pair of points xi and xj was

computed as great-circle distance DGC(xi, xj) multiplied by a
factor that depends on the angle of inclination q(xi, xj) of the
vector pointing from xi to xj. q was computed as if latitude and
longitude were Euclidean coordinates (on a cylindrical pro-
jection) to allow for anisotropy:

Dx= 2
ffiffiffiffiffiffiffiffiffiffi
g Dtð Þ

p DGC xi, xj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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When Dx = 0 (that is, for points at the same location but
different times), the covariance function reduces to

r+ 1−rð Þ 1−uð Þe�jDtj=ft +u cos 2pDtð Þ
h i

S1:10

As temporal separation increases, the covariance approaches
a limiting sinusoid t2[r + (1 − r)u cos (2pDt)] rather than zero.
When Dt = 0, on the other hand (for points at different loca-
tions but the same time), it reduces to a standard exponential
form with range parameter fx

ffiffiffi
2

p
. Unlike standard sum-product

models, this covariance function does not have problematic
ridges along its axes.6

SI 1.2 Prior specification.
The square root of the partial sill t and the spatial range

parameter fx were assigned skew-normal priors:

log tjmt ,Vt , at � Skew-Normalðmt ,Vt , atÞ S1:11

log fxjmf,Vf, af � Skew-Normal mf,Vf, af
� �

S1:12

and their specification is described further below.
The standard one-over-x prior for the temporal scale param-

eter ft resulted in collapse to 0, a common artifact when data do
not contain strong information. A relatively vague but proper
prior, which has an expectation of ten years, was used instead.

ft � Exponential 0, :1ð Þ S1:13



A uniform prior was assigned to the direction of anisotropy
parameter l and to the square of the eccentricity parameter
y, which controls the amount of anisotropy,

l � Uniform 0, pð Þ S1:14

y2 � Uniform 0, 1ð Þ S1:15

a uniform prior was assigned to the temporal parameters
governing the amplitude of the sinusoidal component r and
the limiting autocorrelation in the temporal direction u:

r � Uniform 0, 1ð Þ, u � Uniform 0, 1ð Þ S1:16

and a standard prior was assigned to the components of
the mean:

p bð Þ / 1 S1:17

Although standard priors such as the improper flat prior3

were assigned to most of the basic model parameters, subjec-
tive skew-normal priors7 were specified for the range and
partial sill parameters t and fx.

SI 1.3 Model implementation.

SI 1.3.1 MCMC algorithms.
The main geostatistical model and the age-standardization

sub-model were fitted by using the MCMC algorithm.3,4 The
algorithm was implemented in the Python8 and FORTRAN
programming languages by using the open-source Bayesian
statistics package PyMC9,10 and the numerical packages SciPy
and NumPy.11

The evaluation of f at the sampling locations and times was
updated by using Gibbs steps.3 The evaluation of the uncor-
related process ò was updated one point at a time by using
random-walk Metropolis steps. 3 The model parameters b, t,
fx, ft, l, y , V, and r were updated jointly by using the method
of Haario and others.12

Within the MCMC loop, the age-standardization factors ~ki

were not imputed explicitly. We were not interested in their
particular values, and marginalizing out nuisance parameters
ahead of time usually improves the mixing of MCMC algo-
rithms. Before theMCMC loop began, the marginal likelihood:

*Bin N+
i ; Ni, kiP
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was approximated by using standard Monte Carlo integration
for several values of P ¢(xi, ti). That is, values for the model
parameters ai, bi, ci, and si and the age distribution si were
drawn from their posterior predictive distributions, then
expression (S1.3) was evaluated to obtain ki, then the binomial
probability was evaluated for several values of P ¢(xi, ti). The
probabilities resulting from many such draws were averaged.
Inside the MCMC loop, the marginal likelihood function for
arbitrary values of P ¢(xi, ti) was evaluated by interpolation.

SI 1.3.2 Age correction model.

The age distribution parameters Si, S0 and v are indepen-
dent of the relative PfPR parameters Pi

¢, ai, ci, bi, si, mA, s,
and R given the data, so these two groups of parameters were
inferred by using separate MCMC algorithms.
In the MCMC for the age distribution parameters, the sur-

vey populations’ age distributions si were updated by using

Gibbs steps.3 The concentration parameter V was updated by
using random-walk Metropolis steps.3 The typical age distri-
bution S0 was represented as a normalized sequence of
gamma random variables,13 and these variables were updated
one at a time by using random-walk Metropolis steps.3

In the MCMC for the relative PfPR parameters, the distri-
butional parameters mA, s and R were updated jointly by
using the method of Haario and others.12 The parameters Pi

¢,
ai, ci, bi, and si were updated jointly for each population i by
using the same method.

SI 1.3.3 Spatiotemporal prediction.
The output of the MCMC stage consisted of {q(l); l = 1, . . . ,

m} samples from the posterior of the parameter set q = {b, t,
fx, ft, l, y , r, k, V} and a corresponding {f (xi, ti)(l); l = 1, . . . ,m}
samples from the posterior of the space-time random field at
each of the n data locations {(xi, ti); i = 1, . . . , n}. For every l¢th
sample, the conditional distribution of the annual mean of the
space-time random field was predicted at each prediction
location xj on the nodes of a regular 1 + 1 km grid within the
spatial limits of stable P. falciparum transmission.14 The dis-
tribution of the annual mean f (xj)(l) for prediction location xj
was modeled as the joint multivariate normal distribution of
the 12 predicted monthly values e.g., (l = 2010tan, . . . , 2010Oss)
for that year specified by a 12-element mean vector ŷ xj

� �
lð Þ

and 12 + 12 variance-covariance matrix ŝ 2 xj
� �

lð Þ:

f xj
� �

lð Þ � MVN y^ xj
� �

lð Þ,s
^2 xj
� �

lð Þ
� �

S1:19

The mean vector ŷ xj
� �

lð Þ was computed by using

ŷ xj
� �

lð Þ = mP lð Þ+C
T
DP lð Þ � C1

DD lð Þ � p x, tð Þ � mD lð Þ

� �
S1:20

where mP and mD were the predicted mean of the random
field at each of the 12 prediction times (l = 2010tan, . . .,
2010Oss) at spatial location xj and at each of the n data loca-
tions respectively, CDP and CDD were the data-to-prediction
and data-to-data covariance matrices respectively, and p(x, t)
was the vector of n data values. The 12 + 12 variance-covari-
ance matrix ŝ 2 xj

� �
lð Þ was computed by using

ŝ 2 xj
� �

lð Þ =CPP lð Þ−C
T
DP lð Þ � C�1

DD lð Þ � CDP lð Þ S:1:21

The value of the l ¢th sample of V, the variance of the
unstructured component ò(x, t), was then added to the diago-
nal of the matrix ŝ 2 xj

� �
lð Þ and 1,000 draws were made ran-

domly from the distribution specified in equation S1.19 These
draws represented samples from the posterior distribution of
f(xj) and were subject to an inverse logit transform and then
multiplied by the l¢th sample of the age-standardization
parameter k2−10(l) to form the l¢th sample from the posterior
distribution of the predicted mean annual 2000, 2005, and
2010 PfPR2–10 endemicity surfaces at location xj:

òP0
2�10 xj

� �
lð Þ= logit−1 f xj

� �
lð Þ + lð Þ

� �
k2�10 lð Þ S:1:22

This procedure was repeated for every l¢th sample to form
the set P0

2�10 xj
� �

lð Þ; l=1, . . . ,m
n o

of m samples for each pre-
diction location. The point estimate of PfPR2–10 endemicity at
each location was defined as the mean of this set, and the



probability of membership to each class was computed as the
proportion of these samples falling within each class definition.
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Table SI 2.1

Univariate analysis of considered model covariates, Malawi*
Covariate Estimate SE Z P

TSI 1.7218 0.4942 3.484 < 0.001
Urban −0.74397 0.18345 −4.055 < 0.001
Precipitation 0.0001277 0.0003238 0.394 0.69343
EVI 0.07315 1.53206 0.048 0.9619

*TSI = temperature suitability index; EVI = enhanced vegetation index.

Table SI 2.2

Covariates selected by total sets analysis for inclusion in prediction
model, Malawi

Covariate Estimate SE t P

Intercept 0.2545488 0.02657700 9.577785 < 0.001
TSI 0.2751015 0.06463496 4.256234 < 0.001
Urban1 −0.1227187 0.02157419 −5.688218 < 0.001

*TSI = temperature suitability index.

Table SI 3.1

Population-adjusted prevalence (%) by district, 2000 and 2005, Malawi*

District

2000 2005

PAPfPR2–10 PAPfPR2–10

Northern region
Chitipa 36.8 36.7
Karonga 41.6 41.4
Mzimba 33.8 33.7
Nkhata Bay 39.9 39.7
Rumphi 35.7 35.6

Central region
Dedza 36.0 35.9
Dowa 36.8 36.7
Kasungu 37.7 37.6
Lilongwe 31.3 31.1
Mchinji 39.2 39.1
Nkhotakota 41.0 40.9
Ntcheu 39.0 38.9
Ntchisi 37.5 37.4
Salima 40.5 40.4

Southern region
Balaka 40.3 40.1
Blantyre 24.9 24.8
Chikwawa 42.4 42.3
Chiradzulu 37.2 37.0
Machinga 41.4 41.3
Mangochi 40.9 40.7
Mulanje 39.4 39.3
Mwanza 40.0 39.9
Neno 41.7 41.5
Nsanje 41.4 41.2
Phalombe 40.1 40.0
Thyolo 39.0 38.8
Zomba 36.6 36.5

Total 36.4 36.3

*PAPfPR2–10 = population-adjusted Plasmodium falciparum rate.
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